Virtual Reality Exercise for Stroke Rehabilitation in Inpatients Who Are Unable to Stand

Completed

Phase N/A Results N/A

Update History

14 Apr '17
The gender criteria for eligibility was updated to "All."
A location was updated in Ottawa.
New
The overall status was removed for Elisabeth Bruyere Hospital.
21 Jul '16
The description was updated.
New
Introduction Sitting balance may be affected by stroke, resulting in functional impairment and reduced mobility. Early return of sitting balance predicts greater return of motor function and mobility after stroke. Task-specific therapy is effective but patients must be motivated to perform the exercises repeatedly for the greatest benefit. Virtual reality training (VRT) allows patients to do exercises while interacting with a video game interface. It is enjoyable and may encourage repetition of therapeutic exercises. Past work in our laboratory showed that standing balance exercises performed with VRT produced additional improvements in gait speed and leg function over traditional inpatient rehabilitation (1). Because of legislative change in Ontario most stroke rehabilitation inpatients today cannot stand independently. There have been no studies on the effect of VRT on sitting balance. Purpose To assess whether additional sitting balance exercises performed via VRT can improve sitting balance and sitting function (ex. reaching) in stroke rehabilitation inpatients. Hypothesis The addition of VRT for sitting balance will significantly improve sitting balance and function, beyond the gains realized from traditional inpatient rehabilitation. Experimental Approach In this blinded randomized control trial funded by the Heart & Stroke Foundation, 76 participants with stroke will be recruited from an inpatient rehabilitation unit. This number will provide enough power to detect a large effect size (0.83) with the primary outcome measure and accounting for a 20% drop-out rate. Individuals who are medically stable and who can sit for at least 20 minutes with or without trunk support but cannot stand independently for more than one minute will be eligible. These criteria will target our selection to those who need to work most on sitting balance. Participants will be randomized into experimental and control groups. Participants in both groups will perform VRT for 30-50 minutes daily for 10-12 sessions, in addition to their rehabilitation program. VRT will be delivered with Jintronix software and motion capture technology. Exercises for the experimental group will challenge sitting balance control, reaching and shifting the base of support. Control group exercises will require limited hand and arm movements, to equalize the additional time spent in an engaging activity without working on trunk balance. Control group participants will be strapped into their chair to minimize trunk movement. A CONFORMat pressure mat will be used to monitor centre of pressure changes during the intervention. Outcome measures will be performed pre-, post- and 1 month post-intervention, by an assessor blinded to group allocation. The primary outcome measure will be the Function in Sitting Test. Secondary outcome measures will be: Ottawa Sitting Scale, Reaching Performance Scale, Wolf Motor Function Test and quantitative measures of postural control performed in sitting. Two-way analyses of variance [factors: time (pre-, post-, 1 month post-)and group(experimental, control)] and Tukey's post-hoc analyses will be used to test the effect of VRT on the outcome measures. Significance and Knowledge Translation If we show that the addition of sitting balance exercises via VRT to traditional rehabilitation improves sitting balance and function, VRT may be added to inpatients' rehabilitation therapy. The ultimate goal is to improve the quality of patients' lives and decrease the burden on their caregivers. Since the Jintronix system is portable, we hope to acquire funding for several units. We would then be able to assess the use of VRT by therapists for inpatients and outpatients with stroke. (1) McEwen D et al. Stroke 2014;45:1853-1855
Old
Introduction Sitting balance may be affected by stroke, resulting in functional impairment and reduced mobility. Early return of sitting balance predicts greater return of motor function and mobility after stroke. Task-specific therapy is effective but patients must be motivated to perform the exercises repeatedly for the greatest benefit. Virtual reality training (VRT) allows patients to do exercises while interacting with a video game interface. It is enjoyable and may encourage repetition of therapeutic exercises. Past work in our laboratory showed that standing balance exercises performed with VRT produced additional improvements in gait speed and leg function over traditional inpatient rehabilitation (1). Because of legislative change in Ontario most stroke rehabilitation inpatients today cannot stand independently. There have been no studies on the effect of VRT on sitting balance. Purpose To assess whether additional sitting balance exercises performed via VRT can improve sitting balance and sitting function (ex. reaching) in stroke rehabilitation inpatients. Hypothesis The addition of VRT for sitting balance will significantly improve sitting balance and function, beyond the gains realized from traditional inpatient rehabilitation. Experimental Approach In this blinded randomized control trial funded by the Heart & Stroke Foundation, 76 participants with stroke will be recruited from an inpatient rehabilitation unit. This number will provide enough power to detect a large effect size (0.83) with the primary outcome measure and accounting for a 20% drop-out rate. Individuals who are medically stable and who can sit for at least 20 minutes with or without trunk support but cannot stand independently for more than one minute will be eligible. These criteria will target our selection to those who need to work most on sitting balance. Participants will be randomized into experimental and control groups. Participants in both groups will perform VRT for 30-50 minutes daily for 10-12 sessions, in addition to their rehabilitation program. VRT will be delivered with Jintronix software and motion capture technology. Exercises for the experimental group will challenge sitting balance control, reaching and shifting the base of support. Control group exercises will require limited hand and arm movements, to equalize the additional time spent in an engaging activity without working on trunk balance. Control group participants will be strapped into their chair to minimize trunk movement. A CONFORMat pressure mat will be used to monitor centre of pressure changes during the intervention. Outcome measures will be performed pre-, post- and 1 month post-intervention, by an assessor blinded to group allocation. The primary outcome measure will be the Function in Sitting Test. Secondary outcome measures will be: Ottawa Sitting Scale, Reaching Performance Scale, Wolf Motor Function Test and quantitative measures of postural control performed in sitting. Two-way analyses of variance [factors: time (pre-, post-, 1 month post-)and group(experimental, control)] and Tukey's post-hoc analyses will be used to test the effect of VRT on the outcome measures. Significance and Knowledge Translation If we show that the addition of sitting balance exercises via VRT to traditional rehabilitation improves sitting balance and function, VRT may be added to inpatients' rehabilitation therapy. The ultimate goal is to improve the quality of patients' lives and decrease the burden on their caregivers. Since the Jintronix system is portable, we hope to acquire funding for several units. We would then be able to assess the use of VRT by therapists for inpatients and outpatients with stroke. (1) McEwen D et al. Stroke 2014;45:1853-1855
7 Jan '15
A location was updated in Ottawa.
New
The overall status was removed for Elisabeth Bruyere Hospital.
26 Dec '14
Trial name was updated.
New
Virtual Reality Exercise for Stroke Rehabilitation in Inpatients Who Are Unable to Stand
The description was updated.
New
Introduction Sitting balance may be affected by stroke, resulting in functional impairment and reduced mobility. Early return of sitting balance predicts greater return of motor function and mobility after stroke. Task-specific therapy is effective but patients must be motivated to perform the exercises repeatedly for the greatest benefit. Virtual reality training (VRT) allows patients to do exercises while interacting with a video game interface. It is enjoyable and may encourage repetition of therapeutic exercises. Past work in our laboratory showed that standing balance exercises performed with VRT produced additional improvements in gait speed and leg function over traditional inpatient rehabilitation (1). Because of legislative change in Ontario most stroke rehabilitation inpatients today cannot stand independently. There have been no studies on the effect of VRT on sitting balance. Purpose To assess whether additional sitting balance exercises performed via VRT can improve sitting balance and sitting function (ex. reaching) in stroke rehabilitation inpatients. Hypothesis The addition of VRT for sitting balance will significantly improve sitting balance and function, beyond the gains realized from traditional inpatient rehabilitation. Experimental Approach In this blinded randomized control trial funded by the Heart & Stroke Foundation, 76 participants with stroke will be recruited from an inpatient rehabilitation unit. This number will provide enough power to detect a large effect size (0.83) with the primary outcome measure and accounting for a 20% drop-out rate. Individuals who are medically stable and who can sit for at least 20 minutes with or without trunk support but cannot stand independently for more than one minute will be eligible. These criteria will target our selection to those who need to work most on sitting balance. Participants will be randomized into experimental and control groups. Participants in both groups will perform VRT for 30-50 minutes daily for 10-12 sessions, in addition to their rehabilitation program. VRT will be delivered with Jintronix software and motion capture technology. Exercises for the experimental group will challenge sitting balance control, reaching and shifting the base of support. Control group exercises will require limited hand and arm movements, to equalize the additional time spent in an engaging activity without working on trunk balance. Control group participants will be strapped into their chair to minimize trunk movement. A CONFORMat pressure mat will be used to monitor centre of pressure changes during the intervention. Outcome measures will be performed pre-, post- and 1 month post-intervention, by an assessor blinded to group allocation. The primary outcome measure will be the Function in Sitting Test. Secondary outcome measures will be: Ottawa Sitting Scale, Reaching Performance Scale, Wolf Motor Function Test and quantitative measures of postural control performed in sitting. Two-way analyses of variance [factors: time (pre-, post-, 1 month post-)and group(experimental, control)] and Tukey's post-hoc analyses will be used to test the effect of VRT on the outcome measures. Significance and Knowledge Translation If we show that the addition of sitting balance exercises via VRT to traditional rehabilitation improves sitting balance and function, VRT may be added to inpatients' rehabilitation therapy. The ultimate goal is to improve the quality of patients' lives and decrease the burden on their caregivers. Since the Jintronix system is portable, we hope to acquire funding for several units. We would then be able to assess the use of VRT by therapists for inpatients and outpatients with stroke. (1) McEwen D et al. Stroke 2014;45:1853-1855
Old
Introduction Sitting balance may be affected by stroke, resulting in functional impairment and reduced mobility. Early return of sitting balance predicts greater return of motor function and mobility after stroke. Task-specific therapy is effective but patients must be motivated to perform the exercises repeatedly for the greatest benefit. Virtual reality training (VRT) allows patients to do exercises while interacting with a video game interface. It is enjoyable and may encourage repetition of therapeutic exercises. Past work in our laboratory showed that standing balance exercises performed with VRT produced additional improvements in gait speed and leg function over traditional inpatient rehabilitation (1). Because of legislative change in Ontario most stroke rehabilitation inpatients today cannot stand independently. There have been no studies on the effect of VRT on sitting balance. Purpose To assess whether additional sitting balance exercises performed via VRT can improve sitting balance and sitting function (ex. reaching) in stroke rehabilitation inpatients. Hypothesis The addition of VRT for sitting balance will significantly improve sitting balance and function, beyond the gains realized from traditional inpatient rehabilitation. Experimental Approach In this blinded randomized control trial funded by the Heart & Stroke Foundation, 50 participants with stroke will be recruited from an inpatient rehabilitation unit. This number will provide enough power to detect a large effect size (0.83) with the primary outcome measure. Individuals who are medically stable and who can sit for at least 20 minutes with or without trunk support but cannot stand independently for more than one minute will be eligible. These criteria will target our selection to those who need to work most on sitting balance. Participants will be randomized into experimental and control groups. Participants in both groups will perform VRT for 30-50 minutes daily for 10-12 sessions, in addition to their rehabilitation program. VRT will be delivered with Jintronix software and motion capture technology. Exercises for the experimental group will challenge sitting balance control, reaching and shifting the base of support. Control group exercises will require limited hand and arm movements, to equalize the additional time spent in an engaging activity without working on trunk balance. Control group participants will be strapped into their chair to minimize trunk movement. A CONFORMat pressure mat will be used to monitor centre of pressure changes during the intervention. Outcome measures will be performed pre-, post- and 1 month post-intervention, by an assessor blinded to group allocation. The primary outcome measure will be the Function in Sitting Test. Secondary outcome measures will be: Ottawa Sitting Scale, Reaching Performance Scale, Wolf Motor Function Test and quantitative measures of postural control performed in sitting. Two-way analyses of variance [factors: time (pre-, post-, 1 month post-)and group(experimental, control)] and Tukey's post-hoc analyses will be used to test the effect of VRT on the outcome measures. Significance and Knowledge Translation If we show that the addition of VRT to traditional rehabilitation improves sitting balance and function, VRT may be added to inpatients' rehabilitation therapy. The ultimate goal is to improve the quality of patients' lives and decrease the burden on their caregivers. Since the Jintronix system is portable, we hope to acquire funding for several units. We would then be able to assess the use of VRT by therapists for inpatients and outpatients with stroke. (1) McEwen D et al. Stroke 2014;45:1853-1855